Специализация в рабочих группах муравьев при трофобиозе с тлями

© 2008 г. Т. А. Новгородова

Институт систематики и экологии животных СО РАН (ИСиЭЖ)
630091 Новосибирск, ул. Фрунзе, 11
e-mail: tanovg@yandex.ru

Поступила в редакцию 24.01.2007 г.

Исследованы особенности поведения и организации работы ухаживающих за тлями рабочих-трофобионтов доминирующих в многовидовых сообществах муравьев Formica polyctena Forst., F. aquilonia Yr., и F. pratensis Retz. В постоянных по составу рабочих группах муравьев, посещающих определенные колонии тлей, выявлена и описана "профессионэйлайт" специализация с четким разграничением функций охраны и сбора пади. Показано, что рабочие группы трофобионтов включают пассивных и активных фуражиров. Функции первых обычно ограничиваются сбором и транспортировкой пади. Активные фуражиры мультифункциональны: они помимо основных функций могут защищать симбионтов, заниматься поиском новых колоний тлей и координировать действия группы. Ранее было установлено, что муравьи используют различные схемы взаимодействия с тлями: от одиночной фуражировки до "профессионэйлайт" специализации. К основным факторам, влияющим на появление узкой специализации в рабочих группах трофобионтов, относятся численность семьи муравьев и состояние ресурсной базы (количество и продуктивность симбионтов). С увеличением численности семей и в условиях дефицита пищевых ресурсов наблюдается тенденция к углублению дифференциации функций в рабочих группах трофобионтов, при этом узкая специализация рабочих особей носит факультативный характер.

Одним из ярких примеров "команд", существующих длительное время, являются группы муравьев, ухаживающих за тлями (трофобионтов). В данной работе под "трофобионтами" мы подразумеваем всех муравьев, ухаживающих за тлями и обеспечивающих поступление в муравейник пади. Известно, что трофобионты составляют относительно постоянные рабочие группы, которые сохраняют верность своим колониям тлей (Rosen-gren, 1971a, b, c; Horstmann, 1975; Новгородова, Резников, 1996). Несмотря на большое количество работ, посвященных симбиотическому отношению муравьев и тлей (см. обзор: Nixon, 1951; Sudd, 1987; Hölldobler, Wilson, 1990; Новгородова, 2004), поведение трофобионтов долгое время оставалось слабо изученным. Обычно их описывали как пассивных фуражиров ("сборщиков пади"), обеспечивающих исключительно сбор и перенос пади в гнездо, которые не способны к самостоятельному поиску добычи и мобилизуются на источник пищи активными фуражирами (Захаров, 1972, 1991). Однако круг задач, связанных с трофобиозом мурав-
Специализация в рабочих группах муравьев

Введение и теория (поиск колоний тлей, уход за тлями и их охрана, строительство убежищ и т.д.), столь разнообразен, что функция хотя бы части рабочих-трофобионтов должна быть значительно шире, чем простая транспортировка углеводородной пищи.

Предварительные исследования на разных видах муравьев показали, что схемы взаимодействия в тлях в значительной мере зависят от размеров семья муравьев и уровня ее организации (Новгородова, Резникова, 1996). Наиболее сложная организация работы групп с четким разделением ролей, в частности функции сбора пади и охраны колонии, была обнаружена у Formica polyctena Foerst. (Резникова, Новгородова, 1998а, б). Мы предположили, что "профессиональная" специализация характерна для видов с многочисленными семьями, обладающими сложным социальным поведением и обширными охраняемыми территориями, и поэтому доминирующих в многовидовых сообществах муравьев.

Цель данной работы – детальное исследование особенностей поведения при взаимодействии с тлями муравьи Formica s. str., доминирующих в одном типах строения, но различных по видовому составу многовидовых ассоциаций, а также сравнительный анализ дифференциации функций в рабочих группах трофобионтов у муравьев разных видов.

Материал и методы

Район исследований

Исследованные виды

Было выбрано три модельных вида муравьев Formica s. str.: ржаные лесные муравьи (Formica polyctena Foerst., F. aquilonia Yar.) и луговой муравей (F. pratensis Retz.). Муравьи всех видов широко распространены: F. polyctena – в бореальной зоне Палеарктики до Байкала; F. aquilonia – борео-транспалеарктический вид; F. pratensis – южно-палеарктический вид, доходит до Якутии, на Дальнем Востоке отсутствует (Длушский, 1967; Czechowski et al., 2002). Ржаные лесные муравьи обитают в хвойных и смешанных лесах, причем F. aquilonia более холодолюбивый вид. В одном и тех же районах он встречается в более тенистых и влажных лесах, где образует, как правило, большие комплексы муравейников. Луговой муравей является эвритипным видом в лесостепной зоне, обитает на остаточных участках, полянах, просеках и лесных опушках (Длушский, 1967; Дмитриенко Петренко, 1976).

По характеру питания, строению гнезд, организации кормового участка исследованные виды относительно сходны между собой. Все они являются активными хищниками, используют обширные охраняемые территории с постоянными границами и сетью фурнажировочных дорог. У лугового муравья дороги заглублены в почву. Муравьи строят гнезда с куполами из растительных остатков, у лугового муравья – обычно плоскими. Исследованные виды значительно различаются по размеру семян, – обычно это десятки тысяч (редко свыше 100 тыс.) особей у F. pratensis (Резникова, 1983), у F. polyctena и F. aquilonia может превышать миллион особей (Длушский, 1967).

Некоторые особенности распространения и биологии исследованных видов тлей приведены по О.И. Ивановской (1977а, б). Все тли, выбранные для исследований, широко распространены: Chaitophorus populeti Panz. и Aphis jacobaeae Schrk. – в Палеарктике до Байкала, Symyobius oblongus Heyd. – в Голарктике. Не деформируются погреб, обитают открытые на различных частях растений: S. oblongus – на коре побегов берез (Betula alba, B. verrucosa, Betula sp.), Chaitophorius populeti Panz. – на молодых побегах осины (Populus tremula L.), Aphis jacobaeae Schrk. – на стеблях, цветоножках и на нижней стороне листв крестовика сухолюбного (Senecio jacobaea), осота полевого (Sonchus arvensis) и других растений (Ивановская, 1977а, б). Тли всех трех видов поселяются различными муравьями (Новгородова, 2005в).

Организация работы муравьев при трофобиозе с тлями

Исследовано по три семьи ржаных лесных муравьев: F. polyctena и F. aquilonia, и две семьи F. pratensis (табл. 1). Одна семья в каждом случае служила модельной, остальные – контролем.

Таблица 1. Исследованные гнезда муравьев и колонии тлей, на которых проводили детальные наблюдения

<table>
<thead>
<tr>
<th>Вид</th>
<th>Характеристика гнезд</th>
<th>Количество колоний тлей</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$D_{кype}/D_{вал}, \text{ см}$</td>
<td>$H, \text{ см}$</td>
</tr>
<tr>
<td>$F. polycetna$</td>
<td>1 100/135</td>
<td>56</td>
</tr>
<tr>
<td>$F. aquilona$</td>
<td>2 112/145</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>3 120/160</td>
<td>64</td>
</tr>
<tr>
<td>$F. pratensis$</td>
<td>4 110/140</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>5 115/145</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>6 118/150</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>7 79/120</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>8 62/105</td>
<td>20</td>
</tr>
</tbody>
</table>

Примечание. Гнезда 2, 5, 7 - модели, а 1, 3, 6, 8 - контрольные. $D_{кype}$ - диаметр купола, $D_{вал}$ - диаметр вала. H - общая высота.

Таблица 2. Степень агрессивности собирающих падь муравьев исследованных видов

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Реакция на раздражитель</th>
<th>Баллы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Убегает</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Нейтральная (не реагирует)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Поза "настоя́же" (стоит сокилько, голова приподнята, антенны направлены в сторону раздражителя)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Поза агрессии (стойка с подогнутым брюшком, поза готовности брызнуть кислотой)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Цепляется за иглу только передними ногами</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>"Мертвая хватка" (муравей атакует иглу, щипцами захватывает иглу)</td>
<td>5</td>
</tr>
</tbody>
</table>

Примечание. Раздражитель - препаративная игла, поднесенная к муравью на расстояние около 1 см.

Для анализа поведения из всего разнообразия признаков мы выбрали 13 наиболее легко выделяемых и в то же время отражающих разные аспекты взаимодействия муравьев друг с другом и с тлями на эксплуатируемой колонии: 1) сбор пади - постукивание антеннами по бокам и брюшку тли, сбор выделаемого капель пади; 2) "отдых" (помещение покоя) - неподвижная поза с периодическими движениями антенн из стороны в сторону; 3) чистка с помощью жвал и ног и т.п.; 4) приподнять антенны - передача жидкiй пищи от одного муравья к другому; 5) контакт муравьев - антеннальный контакт особей между собой; 6) поза "настоя́же" - неподвижная поза, голова приподнята, антенны направлены в сторону раздражителя; 7) поза агрессии - стойка с подогнутым брюшком, поза готовности брызнуть кислотой; 8) накоснi на раздражающие объекты - резкие выпады в сторону опасности или других муравьев; 9) исследовательская активность - изучение разных частей кормового растения (стебель, листья и т.п.) с помощью антенн; 10) переход на другие колонии тлей в пределах кормового растения; 11) резкие прыжки вдоль колонии; 12) потряхивание и (или) вибрирование брюшком; 13) транспортировка пади - уход груженого падью муравья с колонии в гнездо.

Определение агрессивности муравьев. Реакцию на раздражитель (препаративная игла, поднесенная к муравью на расстояние около 1 см) фиксировали в природных условиях в спокойной обстановке (8–10 раз для каждой особи). Расположив ответные реакции в порядке возрастания агрессивности, направленной на раздражитель, получили шкалу агрессивности в балах (табл. 2).

Численное соотношение муравьев и тлей-симбионтов. Отмечали количество трелей и муравьев, единовременно находящихся на колониях, для следующих пар видов: F. polycetna/S. oblongus, F. aquilona/Ch. populeti, F. pratensis/Ch. populeti. Учет проводили 1 раз в 2–3 дня на протяжении 6 нед (июнь–июль).

Статистическая обработка

Для выяснения сходства между бюджетами времени муравьев применяли метод иерархического кластерного анализа, для чего вычисляли коэффициенты корреляции Пирсона (r_p) между всеми параметрами исходных данных. Для оценки значимости индивидуального поведения муравьев подсчитывали средние величины, стандартное отклонение и коэффициенты ранговой корреляции Спирмена.
Специализация в рабочих группах муравьев

Результаты

Организация работы муравьев при трофобиозе с тлями

Численное соотношение муравьев и тлей-симвононтов. Наблюдения за помеченными муравьями показали, что отдельные колонии тлей обслуживают относительно постоянные по составу рабочие группы трофобионтов. Путем учетов насекомых-симвононтов, единовременно находящихся на колониях, выявлена значимая корреляция между количеством муравьев и тлей в колониях: F. polyctena/Ch. oblongus (r = 0.91, p < 0.05; n = 35), F. aquilonia/Ch. populeti (r = 0.88, p < 0.05; n = 27) и F. pratensis/Ch. populeti (r = 0.80, p < 0.05; n = 20).

Следует отметить, что соотношение числа рабочих-трофобионтов и обслуживаемых ими тлей оказалось практически постоянным: для F. polyctena и F. aquilonia приблизительно 1:3 независимо от вида тлей, а для F. pratensis — 1:9. Из этого следует, что по сравнению с F. aquilonia, связанных с тем же видом тлей, что и луговой муравей, на одного рабочего F. pratensis приходится в три раза больше тлей.

Из 13 единиц поведения, выделенных в процессе наблюдений, 12 оказывались общими для всех исследованных видов. Вибрируем брюшком отмечено только у лугового муравья.

Рыжие лесные муравьи (F. polyctena, F. aquilonia). Применение кластерного анализа к бюджетам времени отдельных трофобионтов позволило построить дендрограммы, на которых ясно отражено объединение муравьев с наиболее похожими бюджетами времени в четыре функциональные группы. Сходные результаты получены для всех исследованных видов. На рис. 1 приведены дендрограммы для модельных гнезд. Мы подсчитали средние доли времени, затрачиваемого членами каждой группы на отдельные элементы поведения (1–12), от времени наблюдений за муравьями непосредственно на колониях тлей (рис. 2). Методом ранговой корреляции Спирмена выявлены значимые различия между усредненными бюджетами времени муравьев из разных "фирмационных" групп внутри каждого вида, коэффициенты корреляции Спирмена (r) варьировали от 0.47 до 0.62. Этиологическая структура групп рабочих-трофобионтов у F. polyctena, F. aquilonia оказалась схожей. "Фирмационные" группы получили названия исходя из основных функций, выполняемых ими. Так, "пастухи" ухаживают за тлями, "сторожа" охраняют колонию, "транспортировщики пади" переносят падь в гнездо, а "координаторы" заняты поиском новых колоний. Значимых различий бюджетов времени муравьев одноименных профессий F. polyctena и F. aquilonia не выявлено, коэффициенты корреляции Спирмена (r) были достаточно высокими (0.74–0.98). В стабильных условиях смена "профессий" среди трофобионтов F. polyctena и F. aquilonia не отмечена. Функционеры отличаются по степени агрессивности, у стороной она значительно выше, чем у других (рис. 3).

"Транспортировщики пади" совершают до десяти рейсов в день. Наблюдая на колонии (3–12 мин), они контактируют со всеми присутствующими муравьями, получают от них пищу, которую впоследствии отдают в гнездо, иногда посвекивают antennами тлей (2–3 мин).

"Пастухи" и "сторожа" находятся в колонии днем и ночью (80 и 87% от времени наблюдений соответственно), лишь изредка уходя в гнездо. "Пастухи" почти непрерывно ухаживают за тлями: посвеккивают антенами и собирают выделенные капли пади. "Сторожа" большую часть времени неподвижно сидят рядом с колонией и почти не контактируют с тлями. При этом они быстрее и значительно активнее реагируют на любые внешние воздействия, чем другие функционеры, прогоняя с колонии хищников и муравьев других видов.

Группа "координаторов" малочисленна. Они обладают многофункциональным поведением, при этом ведут себя осторожнее по сравнению с остальными функционерами, часто избегают опасности (рис. 3). Они обследуют листья и ветви, проходят не только на соседние, но и на далеко расположенные колонии в пределах кормового растения. Могут некоторое время заменять "пастухов" и "сторожей" во время их отсутствия, что иногда случается в периоды спада активности муравьев. Ранее нами были описаны случаи, когда "координатор" F. polyctena обнаруживал временно покинутую колонию тлей и собирал падь до возвращения "пастухов" и "сторожей" либо находил крышалку тлю, ухватив ту за ней до появления личинок, а затем привлекал "пастухов" к соседним колониям для работы на новом месте (Резникова, Новгородова, 1998а). Следует отметить, что "координаторы" с группой трофобионтов образуют "разведчики" во многом сходны. "Разведчики" также обладают многофункциональным поведением, занимаются самостоятельным поиском добывы, мобилизуют пассивных фурерков и играют ключевую роль при транспортировке добычи в гнездо, координируя действия членов рабочей группы (Robson, Traniello, 1998, 2002; Franks et al., 2001; Zakhov, 1972, 2005), а также способны реагировать на сложные задачи (Резникова, 1983; Резникова, Новгородова, 1998а). В связи с этим в дальнейшем, по-видимому, целесообразно использовать...
термин “разведчик” по отношению к профессиональной группе трофобионтов, ранее получившей не совсем удачное название “координаторы” (Резников, Новгородова, 1998а).

Луговой муравей (*F. pratensis*). В отличие от рыхлых лесных муравьев у *F. pratensis* выделено только две “профессиональные” группы: “пастухи” и мультифункциональные “сторожа” (рис. 1).
Специализация в рабочих группах муравьев

Рис. 2. Доли времени, затраченного на различные элементы поведения трофобионтами исследованных видов из разных профессиональных групп: П — "пастухи", С — "сторожи", К — "координаторы", Т — "транспортёры пади". Элементы поведения: 1 — сбор пади; 2 — "отдых"; 3 — чистка; 4 — трофалаксис; 5 — контакт муравьев; 6 — поза "сторожка"; 7 — поза агрессии; 8 — наскоки на раздражающие объекты; 9 — исследовательская активность; 10 — переход на другие колонии тлей в пределах кормового растения; 11 — резкие пробежки вдоль колонии; 12 — вбирирование брюшком. Согласно критерию ранговой корреляции Спирмена, данные муравьев из одноименных профессиональных групп достоверно сходны (Spearman, \(p < 0.01\)), из разноименных — имеют значительные отличия.

По своим основным функциям муравьи из выделенных групп сходны с муравьями из одноименных профессиональных групп рыжих лесных муравьев: "пастухи" собирают капли пади, "сторожи" охраняют тлей (рис. 2). Муравьи всех трех модельных видов, выполняющие сходные функции, не различаются по степени агрессивности, при этом агрессивность "сторожей" значительно выше, чем "пастухов" (Wilcoxon, \(p < 0.05\)) и составляет 4–5 баллов (рис. 3). Вместе с тем есть и существенные отличия. Во-первых, "сторожи" F. pratensis удерживают взаимодействие с тлей (сбору пади) значительно больше времени, чем их "коллеги" F. polyctena и F. aquilina (рис. 2). — в среднем 87.37 ± 5.59, 10.99 ± 3.28 и 13.05 ± 4.78 соответственно (F. polyctena vs. F. pratensis: \(t = -60.046, df = 48, p < 0.001\); F. aquilina vs. F. pratensis: \(t = -39.27, df = 28, p < 0.001\)). Во-вторых, "пастухи" и "сторожа" F. pratensis относят падь в гнездо самостоятельно, а группа "транспортёров пади" у данного вида...
дя отсутствует. Обычно муравей, который собирается идти в гнездо, забирает собранную падь и у других рабочих, находящихся на колонии тлей. Что касается поиска новых колоний тлей, то, к сожалению, пронаблюдать этот процесс нам не удалось. Однако проявление "сторожами" высокой исследовательской активности (рис. 2) дает основания полагать, что, обладая мультифункциональным поведением, именно они играют главную роль в поиске тлей и организации работы трофобионтов.

Несмотря на разное количество профессиональных групп, среди трофобионтов на колониях тлей у всех трех видов (F. polyctena, F. aquilonia и F. pratensis) наблюдается ярко выраженная разграничение функций сбора пади и охраны колонии. Таким образом, для муравьев F. pratensis, так же как и для ряда лесных муравьев, характерна профессиональная специализация в группах рабочих-трофобионтов.

Некоторые особенности взаимодействия с тлями исследованных видов

Защита от неблагоприятных погодных условий. В отличие от представителей других видов в многовидовых ассоциациях муравьев F. polyctena, F. aquilonia и F. pratensis обеспечивают тлям определенную степень защиты от неблагоприятных погодных условий. Во время сильного ветра и дождя тля могут быть сбиты с растения. Рабочие F. polyctena, F. aquilonia и F. pratensis, выполняющие функции "пастухов" и "сторожей", не покидают колонии тлей в непогоду. Во время дождя они цепляются ногами за стебель растения и прикрывают собой тлей, образуя подобие "защитной сети" на колонии. Зарегистрировано 74, 52 и 23 случая соответственно. Трофобионты других видов муравьев во время дождя обычно не активны, они уходят в гнездо или прячутся под листьями неподалеку от колонии.

Изменчивость схем взаимодействия муравьев с тлями. Установлено, что организация работы трофобионтов на надземных колониях тлей меняется в течение сезона. Так, в конце августа – октябре при снижении продуктивности тлей, по крайней мере на надземных частях растений, у муравьев всех исследованных видов наблюдается углубление схемы взаимодействия с тлями. Количество рабочих, единовременно находящихся на колониях тлей и ухаживающих за ними, значительно сокращается (до 1–2 особей независимо от размера колонии тлей). Соотношение числа муравьев и тлей меняется и становится непостоянным. В основном на колониях отмечены особи, ранее выполняющие функции "пастухов". Передачу пади в гнездо они осуществляют либо самостоятельно, либо через "транспортировщиков". Последнее характерно только для ряда лесных муравьев. Таким образом, вместо "профессиональной" специализации наблюдаются лишь частичное разделение функций или работа неспециализированных трофобионтов. В обоих случаях разграничения функций сбора пади и охраны колонии не происходит.

ОБСУЖДЕНИЕ

Успешное выполнение различных задач в сообществах социальных животных зависит от согласованности действий членов рабочей группы. Одним из способов повышения эффективности действий является специализация особей. Речь идет о ситуациях, когда особи хотя бы временно выполняют определенные функции, строго распространенные между членами группы (Anderson, Franks, 2000). Работу "команд" удается наблюдать достаточно редко, при этом связь в группе часто носит лишь временный характер. Группы муравьев, собирающих падь, являются уникальным модельным объектом для детального исследования механизмов взаимодействия особей в устойчивой группе. Изучение поведения трофобионтов, связанных с определенными колониями тлей, позволяет наблюдать долговременные отношения муравьев в относительно постоянных по составу группах рабочих.

Муравьи, занимающихся фуражировкой, принято разделять на активных и пассивных (Захаров, 1972). Первые ведут самостоятельный поиск добычи и мобилизуют на нее пассивных особей. Ранее считалось, что группа сборщиков пади состоит исключительно из пассивных фуражиров с запрограммированными функциями сбора и транспортировки пади в гнездо (Захаров, 1972). Нами показано, что рабочие группы трофобионтов, посещающих определенные колонии тлей, включают как пассивных, так и активных фуражиров. Функции первых сводятся в основном к сбору и транспортировке пади. Активные фуражиры мультифункциональны и могут помимо основных функций защищать тлей, заниматься поиском их новых колоний и в некото
Специализация в рабочих группах муравьев

рой степени координировать действия остальных членов группы.

Есть основания полагать, что глубина функциональной дифференциации в рабочих группах в первую очередь связана с потребностями и/или обеспеченностью семьи углеводной пищей. Основными факторами, влияющими на появление узкой специализации в группах, по-видимому, являются численность семьи и состояние ресурсной базы (количество и продуктивность симбионтов). Так, тенденция к углублению дифференциации функций в рабочих группах трофобионтов наблюдается с увеличением численности семей муравьев. У видов с небольшими семьями (Formica fusca L., F. cunicularia glauca Ruz., Lasius niger L.) отмечена единая фуражировка незначительных трофобионтов (Новгородова, 2002, 2003, 2005а).

В то же время у муравьев с многочисленными семьями происходит дальнейшая дифференциация функций особых групп активных и пассивных фуражиров. У видов Formica s. str. наблюдается устойчивая защита колоний тлей-симбионтов. Активные фуражы становятся неотъемлемой частью рабочих групп, обслуживающих отдельные колонии тлей. Более того, они практически постоянно находятся на растениях с тлями, охраняя своими симбионтов от негативных внешних воздействий. Однако глубина специализации может различаться у разных видов. Так, экологическая структура рабочих групп трофобионтов F. polycetna и F. aquilonia и лугового муравья существенно отличается. У рыбных лесных муравьев представлены четыре типа поведения, соответствующие функциям "пастухов", "сторожей", "транспортировщиков пади" и "координаторов". U F. pratensis выявлены только два, "пастухи" и "сторожа". Использование именно этих названий обусловлено преобладанием в поведении свойств одноименных "профессиональных групп", несмотря на некоторые различия. Так, транспортировку пади представляет обеих групп у F. pratensis осуществляют самостоятельно. Что касается функций "координаторов", то у лугового муравья их выполняют "сторожа", проявляющие высокую исследовательскую активность. Именно эти особы обладают мультифункциональным поведением, схожим с таковым муравьев F. polycetna, как "координаторов", так и "разведчиков" действующих в лабораторных условиях при решении поисковых задач (Резникова, Новгородова, 1998а, Резникова, Рjabko, 1995). Кроме того, экспериментальным путем установлено, что "сторожа" способны решать достаточно сложные задачи по проделанию превыс на пути к колониям тлей, более того, путем антенного контакта они передают "пастухам" информацию, необходимую для успешного попадания на растение с тлями, окруженное лабиринтом (Новгородова, 2007). В целом луговой муравьёв занимает промежуточное положение в ряду исследованных видов как по глубине функциональной дифференциации в рабочих группах, так и по численности семьи (на порядок ниже, чем у рыбных лесных муравьев).

Одним из факторов, влияющих на появление специализации, помимо численности семьи является состояние ресурсной базы. Экспериментальным путем было установлено, что в условиях дефицита пищевых ресурсов (сокращение доступных колоний тлей) недостаточное обеспечение семьи F. cunicularia glauca углеводной пищей приводит к значительной перестройке организации работы трофобионтов, резко увеличивается количество муравьев, посещающих оставшиеся колонии, появлению устойчивой охраны, по-видимому, за счет привлечения активных фуражиров (Новгородова, 2003). В то же время снижение продуктивности симбионтов, в частности на надземных частях растений в осенний период, приводит к упрощению схемы работы и трофобионтов Formica s. str. Количество рабочих, занятых на колониях тлей, резко сокращается, а эффективности работы муравьев меняется и состав группы. Исчезает функциональная дифференциация в группах активных и пассивных фуражиров. Активные муравьи на растениях практически
не появляются. Из паразитических особей продолжают работать только “пастухи”, которые в этих условиях самостоятельно переносят пад в гнездо и у рыбьих лесных муравьев. Эффективность защиты тлей от хищников при этом, по-видимому, значительно снижается.

В целом муравьи демонстрируют в многовидовых сообществах различное поведение при взаимодействии с тлями: от работы неспециализированных трофобионтов (Новгородова, Резникова, 1996; Новгородова, 2003а, 2005а) до “профессиональной” специализации в группах, характерной для доминирующих видов муравьев с более высоким уровнем социальной организации. Трофобионты, именно этих видов не переносят на сбор белоковой пищи, узнают “своих” тлей (за которыми ухаживают члены семьи), а также наиболее эффективно защищают колонии тлей от божьих коровок, как взрослых особей, так и личинок (Novgorodova, 2005). Кроме того, экспериментальным путем было установлено, что разделение функций в группах трофобионтов значительно повышает эффективность ухода за тлей, оказывая положительное влияние на их выживаемость (Новгородова, 2005а).

Таким образом, узкая специализация в рабочих группах носит факультативный характер, при этом схемы взаимодействия с тлями лежат в небольшом диапазоне вариантов разной сложности, которые используются муравьями в определенных условиях в соответствии с потребностями семьи.

Автор выражает искреннюю признательность Ж.И. Резниковой за ценные советы при проведении исследований, А.А. Захарову и Е.Б. Федосеевой — за конструктивную критику при обсуждении представленных результатов.

Исследования выполнены при финансовой поддержке грантов РФФИ (06-04-48288). Совета по грантам Президента РФ (НШ-1038.2006.4; МК-1231.2005.4), а также Президиума РАН по программе “Происхождение и эволюция биосферы”.

СПИСОК ЛИТЕРАТУРЫ

Захаров А.А., 2005. Дифференциация функций и доминирование в развитии биосоциальности // Зоол. журн. Т. 84. № 1. С. 38–53.

Леббок Л., 1884. Муравьи, пчелы, осы. Санкт-Петербург. 491 с.

Новгородова Т.А., 2005а. Особенности мутуалистических отношений с тлями двух видов муравьев рода Lasius (Formicidae) // Весенняя процедура. Т. 16. № 2. С. 199–205.

Новгородова Т.А., 2005б. Долевой вклад членов многовидовой ассоциации муравьев в потенциал численности общих симбионтов-тлей // ДАН. Т. 401. № 6. С. 848–849.

Новгородова Т.А., 2005в. Влияние рыбьих лесных муравьев (Formicidae) на многовидовые комплексы тлей (Aphidinae) в растекательных лесах г. Новосибирск // Евразийский экологический журнал. Т. 4. Вып. 2. С. 117–120.

СPECIALIZATION В РАБОЧИХ ГРУППАХ МУРАВЬЕВ

Ренникова Ж.И., Новгородова Т.А., 1998а. Распределение ролей и объем информации в рабочих группах муравьев // Успехи соврем. биологии. Т. 118. № 3. С. 345–357.

Ренникова Ж.И., Новгородова Т.А., 1998б. Роль индивидуального и социального опыта во взаимодействии муравьев с тлями-симбионтами // ДАН. Т. 359. № 4. С. 572–574.

The specialisation in ant working groups involved in trophobiosis with aphids

T. A. Novgorodova

Institute for Animal Systematics and Ecology, Siberian Branch of Russian Academy of Sciences

ul. Frunze, 11, Novosibirsk 630091, Russia
e-mail: tanovg@yandex.ru

The peculiarities of behaviour and organization of taking care of aphids while trophobiosis were studied in ant species predominant in multi-species communities (Formica polyctena Forst, F. aquilonia Yarr., and F. pratensis Retz.). “Professional specialisation” with distinct division of segregation functions of aphid colony protection and honeydew collecting was revealed and described in working groups of ants, which are constant in composition. It is shown that trophobiont working groups include both passive and active foragers. The functions of the former are usually limited to honeydew collecting and transportation. Active foragers are multifunctional: in addition to their basic duties, they may defend symbionts, search for new aphid colonies, and, to some extent, coordinate group activities. It was shown earlier that ants employ different schemes of interactions with aphids, from individual foraging to “professional specialisation” in working groups. Comparative analysis of the schemes of interactions between ants of different species and aphids has shown that the degree of functional differentiation in trophobiont working groups is conditioned by carbohydrate food requirements of the colony. Ant colony size and the condition of available resources (abundance and productivity of symbionts) are the principal factors that determine the emergence of strict specialisation in groups. The trend to further differentiation of functions in trophobiont working groups is observed under increasing ant colony size and under food deficiency; such strict specialisation is facultative.