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INTRODUCTION

Outbreaks of gypsy moth (

 

Lymantria

 

 

 

dispar

 

 L.) and
strong defoliation of forests on vast areas in Northern
America and Eurasia including Russia have greatly
aroused interest in problems of both the phyllophage
density management and plant resistance in the last
decades of the past century and at the beginning of the
current century (Furuta, 1982; Elkinton, 1990; Podg-
waite et al., 1992; Cunningham et al., 1997; Bakhvalov
et al., 2002; Koltunov, 2006; Martemyanov, Bakhvalov,
2007).

Strong and frequently total defoliation of forests
including both birch and aspen forests on a huge area
(hundreds of thousands of hectares) in Western Siberia
induced by the gypsy moth have resulted in significant
economic losses and alteration of forest ecosystems.

One important direction in studying the effect of
defoliation on the stand condition is research into the
phenolic compounds and soluble sugar dynamics in the
leaves of damaged plants because these compounds
have a significant effect on the viability and resistance
to different extreme factors including herbivorous
insects (Feeny, 1968; Battisti, 1988; Haukioja, 1991;
Zaprometov, 1993; Shapiro et al., 1994; Schoonhoven
et al., 1998; Crone, Jones, 1999). It is known that a

number of defense mechanisms which can be reflected
negatively in the condition of insects–phytophages at a
later time are activated in response to defoliation or
plant tissue damage by insects. These responses can be
exhibited in the current season after damage by the
insects (rapid induced resistance) and in the following
vegetative season after leaf regrowth (delayed induced
resistance) (Kaitaniemi et al., 1998; Bernays, Chap-
man, 2000; Osier, Lindroth, 2004; Haukioja, 2005).
Frequently such reactions proceed with reactive oxy-
gen species generation, for example, as a result of phe-
nol oxidases activation with subsequent oxidation of
the phenolic compounds that extensively determine the
efficiency of the plant’s defensive responses (Ahmad,
Pardini, 1990; Zaprometov, 1993; Treutter, 2001).

It was shown that plants can enlarge their protective
functions due to an increase in the allechemical produc-
tion that can negatively effect the phyllophages (Ivash-
chenko, 1995; Dillon, Charnley, 1995; Zvereva et al.,
1997; Muzatova, 2000; Ossipov et al., 2001). At the
same time, there are quite a few papers reporting the
absence of a negative effect of defoliation on insect via-
bility (Watt et al., 1991; Osier, Lindroth, 2001) and
even about an increase in insect viability for those
inhabiting damaged plants (Watt et al., 1991; Osier,
Lindroth, 2001). It was also revealed that the plant
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Abstract

 

—The dynamics of phenolic compounds, flavonols, catechines, tannins, and soluble sugars in the
leaves of the silver birch 

 

Betula pendula

 

 Roth after strong (75%) and total (100%) artificial defoliation was
studied. It was shown that the flavonol content in the leaves did not change after strong and total defoliation,
while the amount of tannins did not change during the first 15 days but increased later on 1 and 2 years after
75% and 100% defoliation. The catechine content did not change during the first 15 days and increased later on
1 year after strong and total defoliation; however, it returned to the level of control plants 2 years after both
types of defoliations. The amount of soluble sugars in the leaves increased 2 days after 75% defoliation; how-
ever, their content conformed to that in control plants after 10 days and it remained later 1 and 2 years after the
damage. The amount of soluble sugars in the leaves also did not change 1 year after 100% defoliation.
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response to leaf loss is complex; i.e., simultaneously
the level of the defensive substances in the leaves (nee-
dles) increases and the sugar level decreases; hence, the
food value is reduced (Willis et al., 1999).

Earlier, we reported the effect of natural and artifi-
cial defoliation of birch forests on the dynamics of dif-
ferent allelochemicals in the leaves and the insect
response to changes of their content (Shul’ts et al.,
2004; Shul’ts et al., 2005).

In this paper we report the results of further studies
on the dynamics of phenolic compounds and soluble
sugars in the leaves of partly and total defoliated plants.
On the basis of previous studies suggesting the impor-
tance of individual phenolic compounds for plant resis-
tance, we studied the dynamics of flavonols, cat-
echines, and tannins.

MATERIAL AND METHODS
Artificial defoliation was conducted in experimental

plots located in several separated forest stands in the
environs of Novosibirsk. Trees nine to ten years of age
were used in the experiment. Control trees and trees
exposed to defoliation were situated in immediate prox-
imity to each other.

Artificial defoliation of trees was accomplished by
means of mechanical removal of leaves from model
trees in the last ten-day period of June when the gypsy
moth, the main silver birch pest in Western Siberia,
defoliates stands in natural outbreaks. Thereby, we syn-
chronize artificial defoliation with severe defoliation in
wild outbreaks in order to compare the dynamics of
both phenolic compounds and carbohydrates in the arti-
ficial and natural damaged plants in future studies. The

selection of the young model trees is explained by sig-
nificant technical difficulties during artificial defolia-
tion of older trees. Mechanical leaf removal in the
experimental trees was accomplished in the crown uni-
formly by removing 3 leaves out of every 4 to induce
75% defoliation and all leaves to induce 100%. In the
case of total defoliation, the sample collection was con-
ducted at the same time but 1 and 2 years later after
damaging the trees. The collected leaves were dried at

 

30–35°ë

 

 for 3 days, and then they were used for bio-
chemical analysis. Flavonoids were determined accord-
ing to Belikov, Shraiber (1970); condensed tannins,
according to Zaprometov (1974); catechines, according
to Kukushkina et al. (2003); and water-soluble carbo-
hydrates, according to Ermakov et al. (1987). Statistical
analysis was carried out using the 

 

T

 

-test.

RESULTS AND DISCUSSION

The dynamics of both flavonols and tannins in the
leaves of the 75% defoliated and intact trees are shown
in Fig. 1. The amount of flavonols in the leaves of the
damaged trees during the first 15 days and later 1 and
2 years after leaf removal was not different from that in
the leaves of the control plants. The tannin content in
the leaves of the damaged trees in current vegetation
season did not differ from that in the leaves of intact
trees. However, the tannin content in the leaves of dam-
aged plants was significantly higher in comparison with
leaves of the control plant in the next two vegetation
seasons, i.e., 1 and 2 years after defoliation. The
amount of catechines in the leaves of damaged trees
was higher then that in the leaves of intact trees only
later, 1 year after the damage was found. Their amount
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Fig. 1.

 

 Content dynamics of flavonols and tannins in the leaves of 75% defoliated and intact trees. 

 

1

 

—“defoliated” flavonols;

 

2

 

—“intact” flavonols; 

 

3

 

—“defoliated” tannins; 

 

4

 

—“intact” tannins. **

 

p

 

 < 0.01.
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Fig. 2.

 

 Content dynamics of catechines in the leaves of 75% defoliated trees (

 

1

 

) and intact trees (

 

2

 

). 

 

*p

 

 < 0.05 (for Figs. 2–4);

 

did not differ from that in the leaves of the control trees
during the first 15 days and later on 2 years after defo-
liation (Fig. 2).

The water soluble carbohydrate content increased
2 days after defoliation in the leaves of damaged plants;
however, their content was sharply reduced on the third
and fifth days. The amount of carbohydrates did not dif-
fer from the control later 10 days after damage (Fig. 3).
Significantly differences in the sugar concentration
were not observed between the test and control plants
in the following two years after strong defoliation.

Thus, 75% defoliation of silver birch causes an
increased amount of catechine in the plant leaves only
later on, 1 year after damages; however, their amount
decreased to the level of the control plants after one
more year. At the same time, the increase in the amount
of tannin 1 year after defoliation remains until the next
season, i.e., 2 years after infliction of damage. It is pos-
sible to assume that the delayed induced entomological
resistance of trees is provided with catechines and tan-
nins. However, the action of tannin is longer than that
of catechine. Earlier it was reported by other research-
ers that catechines and tannins can negatively affect the
period of larval stage and weight of the female pupae

when caterpillars of 

 

Epirrita

 

 

 

autumnata

 

 fed on damaged
trees of silver mounting (Ruuhola et al., 2007).

The artificial 75% defoliation also causes a short-
term increase in the amount soluble sugars in the leaves
of damaged trees with the subsequent decrease in their
amount over several days. However, the amount of
sugar in the leaves of damaged trees does not signifi-
cantly differ from the control a year after defoliation
and even has a tendency to increase. Probably, the pri-
mary increase in the sugar content is connected with
dissociation of polysaccharides on mono- and disac-
charides; however, afterwards the sharp reduction of
the photosynthetic surface is not able to compensate for
the loss of soluble sugars and polysaccharides. It is pos-
sible to assume that the reduction of the amount of sol-
uble sugars in the leaves 3 days after damage dde-
creases the food quality and lead to low accumulation
of energy by folivore and this can result in a decrease in
their fecundity. However, taking into account the mod-
erate reduction in the level of soluble sugars in a quan-
titative sense, it is difficult to suppose that this
adversely affects insect feeding. Most probably, insects
easily compensate for insignificant sugar loss by an
increase in leaf consumption. Moreover, earlier we
showed that artificial 75% defoliation of silver birch did
not result in reliable changes in the insects performance
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(Bakhvalov et al., 2006). Consequently, this result also
confirms the statement that the reduction of the nutri-
tive value is not the main defensive reaction of the plant
against insects.

The flavonol content 1 and 2 years later and the
sugar content a year after damage does not significantly
differ from the control when the tree was totally (100%)
defoliated (Fig. 4). The total loss of leaves as in the case
of 75% defoliation results in an increase in the amount
of both catechines and tannins during the next 2 years;
however, the increase in the amount of catechine
2 years after defoliation does not reach a significant
value in comparison with the control (Fig. 4). It is to be
noted that about 18% of the completely defoliated trees
(4 individuals out of 22) died, which indicated the
strong stress induced by the full loss of the photosyn-
thetic apparatus. Nevertheless, even so the induced
stress did not significantly increase the amount of cat-
echines and tannins or the reduction of the amount of
sugars in the leaves of totally damaged plants as com-
pared with leaves of the 75% damaged silver birch.

A sharp decrease of density of herbivorous insects
including the gypsy moth in the natural outbreaks after
strong or totally damage to the leaves was repeatedly
observed (Bachvalov et al., 2002; Belyaev et al., 2005;
Martemyanov and Bakhvalov 2007). Basing on current

results it is possible to note that phenolic compounds
and sugars were unlikely the main cause of the drop in
phyllophages. Most likely, the negative effect of both
cathechines and tannins on insects is shown when they
act jointly with other allelochemicals. Furthermore, it is
not ruled out that protection of the allelochemicals
against insects is shown more strongly after natural
defoliation by caterpillars. It is known that in this case
elisitors contained in the insect saliva that can induce
additional signal pathways in a plant, which results in a
response differing from the induction after mechanical
defoliation, have an important role (Baldwin et al.,
1997; Korth, Dixon, 1997; Kahl et al., 2000).

Thus, the obtained results suggest that strong and
total defoliation of the silver birch does not cause
changes in the flavonol content but results in an
increase in the contents of both catechines and tannins
after 1 and 2 years, which most likely determines the
delayed induced resistance against gypsy moth. At the
same time, the amount of soluble sugars was reduced in
the first days after damage and later on did not differ
from the control. Presumably, the content of soluble
sugars in the silver birch leaves does not determine the
plant resistance to gypsy moth.
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 Content dynamics of soluble sugars in the leaves of 75% defoliated trees (
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 Content dynamics of allelochemicals and sugars in the leaves of 100% defoliated and intact trees.
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